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Abstract. We investigate the behavior of energy fluctuations in several models of granular gases maintained
in a non-equilibrium steady state. In the case of a gas heated from a boundary, the inhomogeneities of
the system play a predominant role. Interpreting the total kinetic energy as a sum of independent but not
identically distributed random variables, it is possible to compute the probability density function (pdf)
of the total energy. Neglecting correlations and using the analytical expression for the inhomogeneous
temperature profile obtained from the granular hydrodynamic equations, we recover results that have
previously been observed numerically and that had been attributed to the presence of correlations. In
order to separate the effects of spatial inhomogeneities from those ascribable to velocity correlations, we
have also considered two models of homogeneously thermostated gases: in this framework it is possible to
reveal the presence of non-trivial effects due to velocity correlations between particles. Such correlations
stem from the inelasticity of collisions. Moreover, the observation that the pdf of the total energy tends to
a Gaussian in the large system limit suggests that they are also due to the finite size of the system.

PACS. 45.70.-n Granular systems – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 47.57.Gc Granular flow

1 Introduction

In non-equilibrium statistical mechanics the emergence of
non-Gaussian distributions is a remarkable feature that
marks an essential difference with typical results of equi-
librium statistical mechanics. In particular, non-Gaussian
behaviors for global quantities (i.e. system averaged) have
been observed in different fields of physics [1], unveil-
ing unexpected analogies between turbulent flows, equi-
librium critical phenomena [2], and non-equilibrium insta-
bilities [3]. Averaged quantities are expected to be free of
the microscopic details of the system under study, in such
a way that their probability distribution function (pdf)
should only depend on few parameters. Furthermore, they
will contain relevant information about the correlations
among different parts of the system.

Granular gases represent a simple example of many-
particles system out of equilibrium. The simplest model
consists of an assembly of smooth hard particles under-
going binary inelastic collisions. This model, known as
the Inelastic Hard Spheres (IHS) model, has stimulated
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a great interest for more than ten years. Its close similar-
ity with the elastic hard spheres fluid has made possible
the exploitation of the long-past known standard methods
of kinetic theory. However the inclusion of energy dissi-
pation in the collision law is sufficient to generate many
surprising features that have been observed both in ex-
periments and simulations, such as clustering, convection,
non-equipartition of energy, etc. [4–6].

In this paper we study the pdfs of the total kinetic
energy of granular gases maintained in a non-equilibrium
steady state by an external driving mechanism which com-
pensates for the energy loss due to collisions. We first fo-
cus on boundary driven gases, since this kind of driving
mechanism can easily be achieved experimentally, vibrat-
ing at high frequencies the container of the gas or one of
its walls [7–10]. Energy is hence provided at the bound-
aries and dissipated by inelastic collisions in the bulk of
the system, leading to strong spatial inhomogeneities. A
coarse-grained description of this steady state, in terms
of density and temperature profiles, can be obtained by
means of hydrodynamic equations [11], which are a pri-
ori valid when the mean-free-path is small compared with
the typical length scale of the gradients. The presence of
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non-uniform density and temperature profiles implies that
the total energy is a sum of variables which are not identi-
cally distributed and, in principle, correlated. We will first
investigate the consequences of the lack of homogeneity
by assuming total independence among the velocities, i.e.
absence of correlations. Interestingly enough, this approx-
imate approach leads to good estimates for the shape of
the pdfs. Similarly, Bertin in a recent paper [12] showed
that considering the sum of independent, but not identi-
cally distributed, random variables can be a useful way to
explain (at least on a qualitative level) the emergence of
non-Gaussian pdfs in other systems.

We will also discuss another important characteristic
of such inhomogeneous systems, i.e. the fact that they are
often non-extensive. Since the energy is injected from the
boundaries and the dissipation happens inside the volume,
it is clear that increasing the volume at constant density
will not a priori increase the total energy linearly with the
total number of particles N . The hydrodynamic approach
allows to show that the relevant variable is the number of
layers of particles at rest [11].

In order to disentangle the effects of inhomogeneities
from those of correlations, we focus, in the second part
of the paper, on the energy fluctuations in homogeneous
granular gases. We will enforce homogeneity by consider-
ing the system in a pure velocity space, i.e. eliminating
any spatial degree of freedom. When inhomogeneities dis-
appear, the effects that may contribute, in the thermody-
namic limit, to a non-Gaussian pdf of the total energy are
the correlations among velocities. Nonetheless such a be-
havior generally shows up when the system is near some
critical point, i.e. when some correlation length (in veloc-
ity space) diverges. A general account of the hard sphere
fluid correlation function may be found in [13]; this the-
ory has been fruitfully applied to the homogeneous cool-
ing state (HCS) for a gas of inelastic hard spheres [14].
This last result was obtained exploiting the fact that the
dynamics is dominated by the hydrodynamic (i.e. slow)
modes, which are exactly computable for the particular
case of the HCS. In our homogeneous models the total
(kinetic) energy is the sum of N identically distributed
random variables. We will show, by numerical simulations,
that in this state the central limit theorem applies and the
energy pdf is a Gaussian in the large N limit, which means
that the correlation length in the velocity space is finite.
The interesting issue then lies in the computation of the
variance of the rescaled pdf. This quantity depends on the
one-particle and (with a pre-factor 1/N) two-particles dis-
tribution functions. It is deeply related to the finite size
correlations between the velocities of the particles. Both
in the case of a stochastic and of a deterministic thermo-
stat, its measure reveals the presence of non-trivial corre-
lations. Remarkably, it only depends upon the restitution
coefficient, but not upon other parameters such as the
number of particles nor on the amplitude of the thermo-
stating force. In the deterministic thermostatted case, it
is moreover in almost perfect agreement with the theoret-
ical computations given in [14] for a gas of inelastic hard
spheres.

The structure of the paper is the following: in Sec-
tion 2 we discuss the gas driven at the boundaries, while
in Section 3 we consider the homogeneous thermostats.
Conclusions are drawn in Section 4.

2 The inhomogeneous boundary driven gas

The focus is here on the energy fluctuations of a gran-
ular gas in the case where energy is injected through a
boundary, typically a vibrating wall. This kind of system
corresponds to a realistic experimental setup [7–10] and
has therefore been widely studied both numerically and
analytically [11,15–19]. As an important consequence of
the boundary heating, the density and the temperature
are not homogeneous: a heat flux is present, which does
not verify the Fourier law. This feature is well described by
kinetic theory and in good agreement with the hydrody-
namic approximation, which allows an analytical calcula-
tion of the density and temperature profiles [11]. Recently
Aumâıtre et al. [20] investigated, by means of Molecular
Dynamics, the fluctuations of the total energy of the sys-
tem. In particular they have studied the behavior of the
first two moments of the energy probability distribution
function (pdf) when the system size is changed, at con-
stant averaged density. Because of the inhomogeneities,
the mean kinetic energy is no more proportional to the
number of particles, and thus it is not an extensive quan-
tity; analogously the mean kinetic temperature, defined
as the average kinetic energy per particle, is no more in-
tensive. This has led [20] to the proposal of a definition
of an effective temperature TE and an effective number of
particles Nf , such that TE is intensive and the total mean
energy 〈E〉 = NfTE is extensive in this effective num-
ber of particles. In the following we will show how an ap-
proximate calculation which neglects correlations and the
small non-Gaussianities, using the hydrodynamic predic-
tion of [11] for the temperature profile, allows in fact to
explain the phenomenology observed in [20]. Within this
description it is possible to obtain an explicit expression
of the effective temperature and effective number of par-
ticles as a function of the system parameters (i.e. number
of particles, restitution coefficient, and temperature of the
vibrating wall). At system sizes large enough, the effective
temperature is shown to be independent of the system size,
while the effective number of particles is proportional to
the surface of the heating boundary.

2.1 Energy probability distribution function

We consider a granular gas of N smooth inelastic hard
spheres of diameter σ and mass m = 1 between two paral-
lel walls. The distance between the two walls is denoted by
H , oriented along the x axis. The linear extension of the
wall is denoted by L, and periodic boundary conditions
are applied along the directions parallel to the wall. One
of the walls (in x = 0) is vibrated, in order to compensate
for the energy lost through inelastic collisions. As usual
in the IHS model, the total momentum is conserved in
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collisions, and only the normal component of the velocity
is affected. Thus, the collision law for a pair of particles
(1, 2) reads:{

v∗
1 = v1 − 1

2 (1 + α)(v12 · σ̂)σ̂
v∗

2 = v2 + 1
2 (1 + α)(v12 · σ̂)σ̂,

(1)

where σ̂ is a unitary vector along the center of the colliding
particles at contact. In the dilute limit, such a system is
well described by the Boltzmann equation, involving the
one-particle distribution function f(r,v, t):

∂tf(r,v1, t) + v1 · ∇f(r,v1, t) = J [f |f ]. (2)

Here J [f |f ] is the collision integral, which takes into ac-
count the inelasticity of the particles:

J [f |f ] = σd−1

∫
dv2

∫
v12·σ̂>0

dσ̂(v12 · σ̂)

×
(

f(r,v∗∗
1 , t)f(r,v∗∗

2 , t)
α2

− f(r,v1, t)f(r,v2, t)
)

, (3)

where a collision transforms the couple (v∗∗
i ,v∗∗

j ) into
(vi,vj), and d denotes the space dimension. The hydrody-
namic fields (local density n, local average velocity field u,
local temperature T ) are defined as the velocity moments:

n(r, t) =
∫

dvf(r,v, t), (4a)

n(r, t)u(r, t) =
∫

dv vf(r,v, t), (4b)

d

2
n(r, t)T (r, t) =

∫
dv

m

2
(v − u)2f(r,v, t). (4c)

The hydrodynamic balance equations for the afore-defined
fields are derived taking the velocity moments in (2).
Then, it is possible to show that a steady state solution
without macroscopic velocity flow exists: this solution is
invariant for translations along all directions perpendicu-
lar to x, so that the hydrodynamic fields only depend upon
x. Moreover this solution is stable if the size (in the di-
rections perpendicular to x) of the system is smaller than
a critical size which depends upon α. In the rest of this
section we consider such a “horizontally homogeneous”
solution, whose temperature profile reads [11]:

T (�) = T0

⎛
⎝cosh

(√
a(α)(�m − �)

)
cosh

(√
a(α)�m

)
⎞
⎠

2

, (5)

where a(α) is a function of the restitution coefficient (its
complete expression is given in Ref. [11]). The variable � is
proportional to the integrated density of the system over
the x axis. Its definition is given by the following relation
involving the local mean-free-path λ(x):

d� =
dx

λ(x)
, λ(x) =

[ √
2π

d−1
2

Γ [(d + 1)/2]
σd−1n(x)

]−1

, (6)

with � = 0 at x = 0. On the other hand, �m is the maximal
�-value, reached at x = H :

�m = Cσd−1

∫ H

0

dx n(x) = Cσd−1Nx, (7)

where Nx is the number of particles per unit section per-
pendicular to the x axis (e.g. Nx = N/L for d = 2), and C

is a constant depending on the dimension (e.g. C = 2
√

2
for d = 2). It thus turns out that the crucial quantity
�m which determines the hydrodynamic profiles is pro-
portional to the number of layers of particles at rest. The
boundary conditions used to get expression (5) are:

T (� = 0) = T0,
∂T

∂�

∣∣∣∣
�=�m

=
∂T

∂x

∣∣∣∣
x=H

= 0, (8)

where we have assumed that the vibrating wall acts as a
thermostat that fixes to T0 the temperature at x = 0. A
detailed observation would show that this is not a very
realistic assumption. Moreover, the region in the vicinity
of x ∼ 0 is the one in which the hydrodynamic description
may break down. Nevertheless, T0 may be seen as an effec-
tive parameter such that (5) coincides with the observed
profile in the region of the system where hydrodynamics
holds. In the following we will suppose the velocity distri-
bution to be a Maxwellian at each fixed distance from the
wall (non-Gaussian features may be observed, but are not
relevant for the present calculation), with a local temper-
ature (variance) given by (5):

f(v, �) =
e−v2/2T (�)

(2πT (�))d/2
. (9)

The distribution for the energy of one particle (e = v2/2)
is hence:

p(e, �) = f 1
T (�) , d

2
(e), (10)

where fα,ν(x) is the gamma distribution [21]:

fα,ν(x) =
αν

Γ (ν)
xν−1e−αx. (11)

The characteristic function of the gamma distribution is:

f̃α,ν(k) =
∫ +∞

−∞
dxeikxfα,ν(x) =

(
1 − ik

α

)−ν

. (12)

Our interest goes to the macroscopic fluctuations inte-
grated over the whole system. Thus, the macroscopic vari-
able of interest is the granular temperature Tg, defined
here as the average of the local temperature over the x
profile:

Tg =
1
N

∫
V

n(r)T (r) dr =
1

�m

∫ �m

0

T (�) d�. (13)

To obtain an expression of the energy pdf over the whole
system, it is useful to divide the box in �m/∆� boxes of
equal height (in the � scale) ∆�. The use of this length
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scale allows to have a fixed number of particles N� in each
box of size L × ∆�, since d� ∝ n(x)dx. Moreover, in each
box i the temperature can be taken as uniform, denoted
Ti ≡ T (i ∆�). In the jth box, we can calculate the energy
εj which is the sum of the energies of the N� particles in
the box. The pdf of this energy, qj(x) = prob(εj = x), can
be straightforwardly computed when the velocities of the
particles are supposed to be uncorrelated:

qj(x) = f 1
Tj

,N�
d
2
(x). (14)

Thus, the characteristic function for the total kinetic en-
ergy E =

∑
εj can be obtained as the product of the

characteristic function q̃j(k) of the pdf of each εj :

P̃ (k) =
�m/∆�∏

j=0

q̃j(k) =
�m/∆�∏

j=0

(1 − ikTj)−
N�d

2 . (15)

Since the number of particle per box N� is a known frac-
tion of the total number of particles (N� = N∆�/�m), one
can rewrite the expression (15) as a Riemann sum. In the
limit ∆� → 0 this yields the total kinetic energy charac-
teristic function:

P̃ (k) = exp

(
− Nd

2�m

∫ �m

0

ln (1 − ikT (�)) d�

)
. (16)

Note that this result is valid for any temperature profile
T (�) and hence it can be applied also to other situations
with different boundary conditions or different hydrody-
namic equations. In this derivation we have considered a
hydrodynamic approach, neglecting fluctuations, and the
validity of this result will be confirmed by numerical sim-
ulations in Section 2.3. Density fluctuations are however
interesting and their effect is investigated in the next sub-
section.

2.2 Local energy fluctuations

While we have focused on the pdf of the global energy in
the previous subsection, it is also interesting to consider
an intermediate scale and to compute the energy pdf for
a “slice” of the system at a given distance x from the vi-
brating wall, and of small height ∆x (such that the local
density and temperature can be considered as uniform).
We still consider that the velocities are Gaussian and un-
correlated. In this case the energy ε is a sum of N(x)
identically distributed random variables, but their num-
ber N(x) fluctuates in time. Hence the pdf of the local
energy is:

Pl(ε, x) =
∞∑

N(x)=1

Pd(N(x))f 1
T (x) ,N(x) d

2
(ε) + Pd(0)δ(ε),

(17)
where Pd is the distribution of the number of particles at
a distance x from the heated wall. The second term in the
above expression is due to the fact that when there are

no particles the energy pdf is a Dirac distribution. If the
particles are uncorrelated the distribution Pd should be
well approximated by a Poisson distribution with average
〈N(x)〉 = n(x)∆x:

Pd(N(x) = i) = e−n(x)∆x (n(x)∆x)i

i!
. (18)

In this framework the explicit expression for the probabil-
ity of the local energy is given, in two dimensions, by:

Pl(ε, x) = e−n(x)∆x− ε
T(x)

√
n(x)∆x

T (x)ε
I1

(
2

√
n(x)∆x ε

T (x)

)

+ 2e−n(x)∆xδ(ε), (19)

where In(x) is the first kind modified Bessel function [22].
For higher dimensions the sum in equation (17) with Pois-
sonian density fluctuations can be expressed as a combi-
nation of generalized hypergeometric functions. The cu-
mulants of those distributions are, in general dimension d:

〈εp〉c(x) =
n(x)∆xT p(x)

2p
d(d + 2) . . . (d + 2p− 2), (20)

where the notation 〈Xp〉c denotes the cumulant of order
p of the variable X .

2.3 Comparison with simulations

To obtain the analytic form of the energy pdf one should
calculate the inverse Fourier Transform of equation (16)
using (5) as temperature profile. This does not seem pos-
sible analytically, but one can resort to numerical proce-
dures. Aumâıtre et al. [23,20] have shown by Molecular
Dynamics (MD) simulations that the energy pdf is very
well fitted by a χ2 law, but with a number of degrees of
freedom different from N d, and a temperature different
from the granular temperature Tg. They proposed to de-
fine an effective number of degrees of freedom Nf and an
effective temperature TE , such that energy pdf should be
of the form Π(E) = f 1

TE
,

Nf
2

(E), with:

Nf = 2
〈E〉2c
〈E2〉c , TE =

〈E2〉c
〈E〉c . (21)

In Figure 1 a direct comparison between the measured
temperature profile in the �-scale and the theoretical pre-
diction of equation (5) shows the agreement between the
Molecular Dynamics simulation and the hydrodynamic
prediction. The numerical scheme used is the Event-
Driven algorithm, in which we have considered periodic
boundary conditions in the y direction, a solid wall in
x = H , and a wall vibrating at x0(t) = A sin(Ωt), where
A = 0.25σ. In Figure 2, the Inverse Fourier Transform
of (16) is compared with the pdf of the y component of
the total energy obtained from MD simulations, showing
a good agreement. We restrict our analysis to the y com-
ponent because the velocity pdf in this direction is closer
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Fig. 1. Temperature profile in the � scale for a system of
N = 1000 particles in a box of height H = 200σ and density
nσ2 = 0.05 with α = 0.99. The temperature is scaled with the
temperature near the vibrating wall T0. The inset show the
temperature profile of the x and y component in the x scale,
showing that the temperature is effectively isotropic apart from
a small region near the vibrating wall.

to the Gaussian distribution (as quantified in the inset by
the excess kurtosis, see also [11]), and is therefore in better
agreement with our hypotheses. In the same figure we have
also plotted the function Π(E) previously defined, which
has a similar shape and yields a better fit of the numeri-
cal data. We emphasize however that our prediction needs
only one fitting parameter, T0, which essentially fixes the
average of the distribution, while in order to have a closed
form for Π(E) one needs to know both the mean and
the variance of the distribution. This underlines the im-
portance of the inhomogeneous hydrodynamic profile in
determining the fluctuations of the global energy; on the
other hand, the correlations, which have been neglected
in our approximate approach, seem to play a lesser role.

Our approach also allows to investigate the behavior
of the macroscopic quantities Nf and TE when the system
size is changed. Indeed, an expression of the cumulants of
the total kinetic energy can be obtained from the charac-
teristic function (16):

〈Ep〉c =
Nd

2�m

∫ �m

0

T p(�)d�, (22)

so that

Nf =
Nd

�m

(∫ �m

0
T (�)d�

)2

∫ �m

0
T 2(�)d�

, TE =

∫ �m

0 T 2(�)d�∫ �m

0
T (�)d�

, (23)

which shows that TE is not rigorously intensive but de-
pends on the number of layers of particles through �m.
At large enough �m however, the integral in equation (22)
becomes size independent:

∫ �m

0

T p(�)d� ∼ T p
0

2p
√

a(α)
, (24)
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Fig. 2. Probability density function of the y component of
the total energy Ey =

∑N
i v2

yi
(dots). The parameters of the

system are the same as in Figure 1. The solid line is the numer-
ical inverse Fourier transform of equation (16) (with d = 1),
while the dashed line is a χ2 distribution with same mean and
same variance of the numerical data, and the dotted line a
χ2 distribution with parameters corresponding to the granular
temperature and the true number of degrees of freedom. The
energy is in units of the temperature of the wall T0. The inset
shows the kurtosis excess κi = 〈v4

i 〉/〈v2
i 〉2 − 3 for the x and y

component of the velocity pdf.

so that the effective temperature TE defined above be-
comes a constant proportional to the temperature of the
wall, while the parameter Nf still depends on the system
size:

Nf ∼ 1√
a(α)

Nd

�m
, TE ∼ T0

2
. (25)

We now investigate how the numerical results of [20] fit
with the previous framework, for the various possibilities
of system size variations at fixed particle size σ and con-
stant density ρ = N/(HL) (we consider for simplicity a
two-dimensional system, as in [20]):

– if only L is increased, at constant H , N/L is constant
so that �m and thus TE do not change;

– if only H is increased, at constant L, �m ∝ N/L in-
creases so that TE is not constant. The variation of TE

with H is however slow and moreover, as soon as N is
large enough, TE reaches its asymptotic value T0/2;

– if both H and L are increased at the same rate, �m

increases slower so that once again TE is not rigorously
constant but varies slowly towards T0/2.

The behavior of Nf also depends on the maximum of
the integrated density �m. At constant σ and density
ρ = N/(HL), equation (25) shows that (i) for a square
cell, since �m ∝ √

N , one obtains Nf ∝ √
N , close to

the N0.4 behavior numerically observed in [20]; and (ii) at
constant L, if only the height H of the cell is increased,
�m is proportional to N , and Nf thus becomes constant.
All these features are in agreement with the numerical ob-
servations in [20]. The above results show that the issues
of intensivity and extensivity can be understood through
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an approximate approach which neglects correlations but
focuses on the inhomogeneities as described by the hydro-
dynamic profiles [11]. The crucial quantity turns out to be
the number of layers of particles at rest. If this number is
large enough, the effective temperature TE becomes inten-
sive. Moreover, this approach is able to quantitatively de-
scribe the behavior of the fluctuations of the total kinetic
energy of a vibrated granular gas. In some cases the en-
ergy pdf can be approximated with a gamma distribution,
which is the standard distribution for the energy pdf in the
canonical equilibrium. Nevertheless there are strong devi-
ations from the equilibrium theory of fluctuations, since
in this case the two parameters of the gamma distribu-
tion (i.e. the temperature and the number of degrees of
freedom) are not the granular temperature nor the total
number of degrees of freedom. Another important remark
is that correlations, and in particular contributions from
the two point distribution function, do not play a primary
role in explaining those deviations from the equilibrium
theory of fluctuations. In order to characterize deviations
which do not arise from inhomogeneities, it can be useful
to measure energy fluctuations at a given height x from
the vibrating wall. From the expression of the cumulants
of the local energy pdf (20) it is possible to define an “ef-
fective density” (of particles) nf (x) = d(d+2)

d2
〈ε〉2
〈ε2〉c

. If the
uncorrelated and Gaussian hypotheses are satisfied, then
nf (x) = n(x), and deviations from this identity should
be due only to correlations and non-Gaussianities. In Fig-
ures 3 and 4 results from MD simulations are shown at
various values of the inelasticity, density and number of
particles. The agreement between equation (19) and the
numerical data is very good, while the deviations from
nf (x) = n(x) shown in Figure 3, are evident but small
compared with the deviations between Nf and N .

Another way to sort out the respective role of hetero-
geneities and of correlations for the global system is to
study granular gases maintained in an homogeneous state
by a suitable energy injection, as proposed below.

3 The homogeneously driven case

In this section we consider a granular gas kept in a station-
ary state by an external homogeneous thermostat. Two
different kinds of thermostat will be used. We will first
consider the so called “Stochastic thermostat”, which is a
white noise acting independently on each particle [24–30].
In a second part we will show some numerical results con-
cerning the “Gaussian thermostat”, which consists of a
negative friction force acting on each particle [28,30].

3.1 Stochastic thermostat

We consider here a gas of N inelastic smooth hard spheres
driven by an external random noise. The equation of mo-
tion of each particle i is:

dvi

dt
=

Fc
i

m
+ ξ̂i(t), (26)
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Fig. 3. Plot of the effective density nf (x) divided by the true
density n(x) in a square box at constant density ρσ2 = 0.04
for α = 0.99 and several system sizes. The corresponding ef-
fective numbers of degrees of freedom are, when the number
of particles and the volume are increased at constant den-
sity: Nf/(Nd) = 0.99; Nf/(Nd) = 0.77; Nf /(Nd) = 0.63;
Nf/(Nd) = 0.47.
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Fig. 4. Plot of the local energy pdf for a system of N =
100 particles in a square cell at density ρσ2 = 0.04 and α =
0.95. The energy has been sampled in a strip of width ∆x =
1.66 σ centered in x = H/2. The solid line is the analytical
estimation from equation (19).

where Fc
i is the force due to inelastic collisions [the latter

being ruled by Eqs. (1)], and ξ̂i is the random acceleration
due to the stochastic force, which is assumed to be an
uncorrelated Gaussian white noise:

〈ξ̂iα(t)ξ̂jβ(t′)〉 = ξ2
0δijδαβδ(t − t′), (27)

where i and j denote the labels of the particles, while
α and β refer to the Euclidean component of the noise.
Our interest goes to the stationary state of such system,
which is homogeneous, and furthermore does not develop
spatial instabilities. A good description of such a sys-
tem can therefore be obtained through a homogeneous
Boltzmann equation, which will contain a Fokker-Planck
diffusion term, taking into account the stochastic force.
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This equation reads [25]:

∂tf(v1, t) = J [f |f ] +
ξ2
0

2

(
∂

∂v1

)2

f(v1, t), (28)

where J [f |f ] is the collision integral (cf. Eq. (3)). The
stationary solution of this equation is well approximated
by the product of a Gaussian with a Sonine Polynomial

f(c) =
e−c2

πd/2
(1 + a2S2(c2)), (29)

where c = v/v0 is a dimensionless velocity, with v0 =√
2T , S2(x) is the second Sonine polynomial

S2(x) =
1
2
x2 − 1

2
(d + 2)x +

1
8
d(d + 2), (30)

and a2 is a coefficient proportional to the kurtosis of the
function f(c):

a2 =
4

d(d + 2)

[
〈c4〉 − 1

4
d(d + 2)

]
=

4
3
[〈c4

x〉 − 3〈c2
x〉2
]
.

(31)
An approximate expression of the coefficient a2 for an ar-
bitrary restitution coefficient is [25]:

a2(α) =
16(1 − α)(1 − 2α2)

73 + 56d − 24αd − 105α + 30(1 − α)α2
. (32)

The energy dissipated in the inelastic collisions is compen-
sated by the energy injected by the thermostat so that the
system reaches a stationary state, in which the tempera-
ture fluctuates around its mean value

Tg = m

(
dξ2

0

√
π

(1 − α2)Ωdnσd−1

)2/3

(1 + O(a2)), (33)

where Ωd is the d-dimensional solid angle, m the mass of
the particle, and n the density of the system. Here we are
interested in the fluctuations of the total energy measured
by the quantity

σ2
E = N

〈E2(t)〉 − 〈E(t)〉2
〈E(t)〉2 . (34)

Note that σ2
E ≡ 2N/Nf , and that Tg is intensive while

the total energy is extensive. Brey et al. have computed,
by means of kinetic equations, an analytical expression for
σ2

E in the homogeneous cooling state, which is equivalent
to the so-called Gaussian deterministic thermostat [14].
This quantity has also been computed in a one dimen-
sional granular gas with a similar thermostat [31]. One of
the main differences of the stochastic thermostat with a
deterministic one is found in the elastic limit. On the one
hand, for the cooling state, when the restitution coeffi-
cient tends to 1, the conservation of energy imposes that
the energy pdf is a Dirac delta function, and the quan-
tity σE goes to 0. On the other hand, with the stochastic
thermostat, if the elastic limit is taken keeping the temper-
ature constant, the strength of the white noise will tend to
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Fig. 5. Energy pdf (dots) from DSMC simulations with a
restitution coefficient α = 0.5 and N = 100 particles for a sys-
tem driven with the stochastic thermostat. The solid line shows
a gamma distribution with same mean and same variance.

zero, but it will still play a role in the velocity correlation
function (we note that it is not necessary to keep the tem-
perature constant while performing the limit, since this
quantity only sets an irrelevant time scale).

An efficient way to have numerical solutions of
Boltzmann-like equations is the so called Direct Simu-
lation Monte Carlo (DSMC). This algorithm simulates
a Markov chain whose associated master equation is ex-
pected to converge to the Boltzmann equation. We per-
formed this kind of simulation to measure the energy pdf.
A plot of this quantity is shown in Figure 5. We observe
again that it is close to a χ2-distribution with same mean
and same variance. Nevertheless the number of degrees of
freedom of this χ2-distribution is lower than the true num-
ber of degrees of freedom (i.e. (N−1)×d). This effect may
arise from two separated causes: the non-gaussianity of the
velocity pdf, and the presence of correlations between the
velocities. This feature also suggests that a calculation of
the energy pdf with the hypothesis of uncorrelated veloc-
ities (but non-Gaussian) could explain at least a part of
this non-trivial effect. The calculation of the pdf of the
sum of the square of n variables distributed following (29)
is straightforward. The characteristic function of the en-
ergy pdf is:

P̃N (k) =
1

(1 − ikT )
Nd
2

(
1 +

d(d + 2)
8

a2

(
1

(1 − ikT )2

− 2
(1 − ikT )

+ 1
))N

(35)

where N is the number of particles of the system. This
result yields

〈E〉 =
d

2
NT, 〈E2〉 − 〈E〉2 =

d

2
NT 2

(
1 +

d + 2
2

a2

)
,

(36)
so that the explicit expression for the energy fluctuations
reads:

σ2
E(uncorr.)

=
2
d

(
1 +

d + 2
2

a2

)
. (37)
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Fig. 6. Plot of σ2
E versus the restitution coefficient α for

N = 100 (©) and N = 1000 (�) particles driven by the
stochastic thermostat. The result of the calculation assuming
uncorrelated velocities (37) is plotted in dashed line.

As expected, the temperature does not appear in the di-
mensionless σ2

E above, which depends on the only available
dimensionless parameters α and d. This result is compared
in Figure 6 with the result of DSMC simulations, carried
out for several values of the restitution coefficient α and for
two different values for the number of particles N . The dis-
agreement between the uncorrelated calculation and the
simulations is a clear sign of the correlations induced by
the inelasticity of the system (the tail of the velocity pdf
is also non-Gaussian [25], but this feature has negligible
consequences for the quantities of interest here). One can
note that the fluctuations increase when the restitution co-
efficient decreases. One can also see that there is a value
of the restitution coefficient α around 1/

√
2, that is when

the approximate expression of a2 vanishes, for which σ2
E is

exactly 1 ≡ 2/d, as for a gas in the canonical equilibrium.

We now turn to the dependence of σ2
E on the strength

of the white noise ξ2
0 . It is useful, for this purpose, to

introduce a rescaled, dimensionless energy

Ẽ =
E − 〈E〉√〈E2〉 − 〈E〉2 . (38)

We have plotted in Figure 7 this rescaled energy pdf for
a system of N = 100 particles with a restitution coeffi-
cient α = 0.5 and for several values of the strength of the
white noise ξ2

0 . As expected, all the pdfs collapse into a
unique distribution: the role of the noise strength is only
to set the temperature (or mean kinetic energy) scale. Be-
sides, relative energy fluctuations only depend on α and
N . Moreover, since σ2

E does not depend on the number of
particles N (for large enough N ),

√〈E2〉 − 〈E〉2 grows as√
N , so that the central limit theorem applies, and hence

P (Ẽ) is a Gaussian in the thermodynamic (N → ∞) limit.
Figure 8 indeed shows how the rescaled energy pdf for
N = 1000 particles is very close to a Gaussian, even if the
χ2-distribution still gives a better fit.
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Fig. 7. Plot of the pdf of Ẽ for a restitution coefficient
α = 0.5, for N = 100 particles, and for several values of the
noise’s strength ξ2

0 . The simulations have been carried on with
both Monte-Carlo (DSMC) and Molecular Dynamics (MD) al-
gorithms, with nσ2 = 0.04.
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3.2 Gaussian thermostat

In this section, we will focus on the fluctuations in a gran-
ular gas driven by a Gaussian thermostat1, which consist
in adding a viscous force, with a negative friction coef-
ficient, in the equation of motion of each particle. Thus
the velocity of the ith particle will verify the following
equation:

dvi

dt
=

Fc
i

m
+ γvi. (39)

1 This is the traditional nomenclature to denote such a ther-
mostat for granular gases. Note, however, that the thermostat-
ing force acting on the particles is not obtained in such a way
to satisfy Gauss’ principle of least constraint. The total kinetic
energy is not constant, but fluctuates in time. Henceforth we
will refer to the Gaussian thermostat without any connection
to Gauss’ principle of least constraint, nor to the thermostats
described in [32].
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In the above equation Fc is the force due to collisions, and
γ is a positive constant. The Boltzmann equation corre-
sponding to equation (39) is:

∂tf(v1, t) = J [f |f ] − γ
∂

∂v1
· [v1f(v1, t)]. (40)

In this case also, the relevant solution is well approximated
by a Gaussian multiplied with a Sonine polynomial [cf.
Eq. (29)]. The expression of the coefficient a2 has been
widely studied [25,28,33], and the one which is in better
agreement with numerical simulations is the following [28]:

a2(α) =
16(1 − α2)(1 − 2α2)

25 + 24d − α(57 − 8d) − 2(1 − α)α2
. (41)

The parameter γ determines the strength of the homo-
geneous force acting on the particles. Its primary role is
to set the temperature scale of the stationary state. Pro-
jecting equation (40) on the second velocity moment is it
possible to get an approximate expression of the station-
ary temperature:

T 	 m

(
2
√

πγd

(1 − α2)Ωdnσd−1

)2

(1 + O(a2)). (42)

This result has been obtained assuming Gaussian velocity
pdf, since the corrections coming from the coefficient a2

are small.
Equation (40) is formally equivalent to the Boltzmann

equation for the homogeneous cooling state (HCS) of a
granular gas, for the particular solution in which all the
time dependence of the velocity pdf appears trough the
time dependent temperature [34]. This mapping of the
cooling state onto a steady state can be obtained in an
equivalent fashion applying a logarithmic time-scale trans-
formation to the time-dependent Boltzmann equation of
the HCS [14,35]. Furthermore, the above scaling solution
can be extended to the n-particle distribution function of
the system. The resulting hierarchy equations of the HCS
are then exactly the same one would obtain for a homo-
geneous granular gas thermostatted by a Gaussian ther-
mostat. Thus these two models not only have the same
velocity pdf, but also the same n-particles distribution,
and hence they will have the same relative fluctuations
and correlation functions. Henceforth we will not distin-
guish any further the HCS and the Gaussian thermostat.
We will therefore compare results obtained for the HCS
with numerical simulations of a gas driven in a station-
ary state with a Gaussian thermostat. We also have to
note that this kind of homogeneous state is unstable for
large enough wavelengths. In the following we will there-
fore focus only on homogeneous states. For the HCS Brey
et al. [14] have obtained an analytical expression for the
quantity σ2

E defined in equation (34). Its expression is:

σ2
E =

d(d + 1)
2

+
d(d + 2)

4
a2(α) + d2b(α), (43)
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Fig. 9. Plot of σ2
E versus the restitution coefficient α for

N = 100 (©) and N = 1000 (�) particles, for the Gaussian
thermostat. The solid line shows the theoretical predictions
of [14], given by equation (43).

where2

b(α) =
{
4
(
1 − 2 α2

) (
1 − 3 α + α2 (α − 1)

) −
(1 − α) (3 − 2 α (8 + 5 α)) d − 2 (3 + α) d2

}
/

{2 d (7 + 6 d − α (15 + 2 α (1 − α) − 2 d))} . (44)

Note that b(1) = −(1 + d)/(2d) so that σ2
E → 0 as α → 1.

The results from DSMC simulations and the theoretical
predictions by Brey et al. are shown in Figure 9. The sim-
ulations have been carried out for two different sizes of the
system (N = 100 and N = 1000), and for several values
of α, and in each case the numerical results are in good
agreement with the predictions of the relation (43). The
energy pdf behaves again as a χ2 distribution. When the
system is not too large (N ∼ 100) the shape of the energy
pdf is very well fitted with a χ2 distribution with a mean
value obtained from the temperature expression (42) and a
variance obtained from (43). Furthermore, when the num-
ber of particles is increased, the χ2-distribution becomes
closer and closer to the Gaussian distribution. All these
features are shown in Figure 10. Reference [14] reported a
good agreement between Molecular Dynamics results and
equation (43). The fact that the relevant correlations are
already captured by the DSMC scheme is a remarkable
feature that will be commented further in the conclusion.

4 Conclusion

In this paper, we have investigated the fluctuations of
the total kinetic energy of granular gases maintained in
a non-equilibrium stationary state through various kinds
of energy injection mechanisms. For heating through a

2 Note that the following expression is not exactly the same
as that given in [14], since here a different expression of the
coefficient a2 (which fits better with numerical simulations) is
used.
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boundary, the system remains inhomogeneous, and the
characteristic function of the energy pdf can be analyt-
ically computed as a functional of the temperature profile
of the system, under the assumption that the particle ve-
locities are uncorrelated. Despite this approximation, the
use of the hydrodynamic profiles obtained in [11] allows
to recover results in agreement with the numerical simu-
lations carried out in reference [20]. This result seems to
be holding even if the hydrodynamic approximation is not
valid over the whole volume of the system, in particular
near the vibrating wall. Moreover, we find that the effec-
tive temperature defined in [20], which is measurable, is
intensive only if the number of layers of particles is large
enough, and can be related to a quantity which plays the
role of the “temperature of the vibrating wall”, which is
microscopically not well defined, and a priori not measur-
able. An effective number of degrees of freedom can also be
defined, and its dependence on the true number of degrees
of freedom has been obtained. Once again, the obtained
behavior is in agreement with the numerical simulations
described in [20], and leads to the conclusion that the non-
extensive behavior of the total energy in such a system is
essentially due to the density and temperature inhomo-
geneities and can be understood through a hydrodynamic
approach.

In homogeneously driven granular gases the total en-
ergy displays a χ2 pdf, with a number of degrees of free-
dom proportional to the number of particles. The total en-
ergy is hence extensive, and moreover, in the N → ∞ limit
the χ2 distribution tends to the Gaussian. We measured,
by means of DSMC simulations, the rescaled variance σ2

E
of the energy pdf, which depends only on the restitution
coefficient. These non-trivial fluctuations are essentially
due to the correlations induced by the inelasticity of the
particles. We can distinguish between two different contri-
butions to these correlations. First, the non-Gaussianity

of the velocity pdf, which simply tells that the Euclidean
components of the velocity of each particle are correlated
one to each other. Second, a contribution from the two
particles velocity pdf, which does not factorize exactly as
a product of two one-particle distributions. The analyt-
ical computation of the rescaled variance σ2

E under the
assumption of uncorrelated non-Gaussian individual ve-
locity pdfs does not reproduce the DSMC results, show-
ing the relevance of this second contribution. It must be
pointed out, however, that these correlations do not invali-
date the Boltzmann equation. As already noted in [13,14],
the two points correlation function g2(v1,v2), which is de-
fined by:

g2(v1,v2) = f (2)(v1,v2) − f(v1)f(v2), (45)

where f (2) is the two points distribution, is of higher
order in the density expansion (roughly speaking
O (g(v1,v2)) ∼ O (f(v1)f(v2)) /N). This is confirmed by
the numerical observation, since the energy pdf tends to
a Gaussian when the number of particles increases.

When the gas is heated with the Gaussian thermo-
stat, the numerical results are in good agreement with
the analytical result in [14]. This means in particular
that the DSMC algorithm is able to capture effects aris-
ing from the two-particle velocity pdf, which is remark-
able. Moreover the energy pdf obtained with DSMC co-
incides with its counterpart found in MD simulations in
the dilute limit, provided the system remains homoge-
neous (cf. Fig. 7). This feature is consistent with the fact
that the DSMC algorithm exactly simulates the homoge-
neous pseudo-Liouville equation governing the N -particle
dynamics of the gas.

For the gas thermostatted by a random noise, numer-
ical simulations show that the quantity σ2

E behaves in a
fashion similar to what happens for the Gaussian thermo-
stat. Nevertheless in the elastic limit (α → 1) it tends to a
non trivial value (∼d/

√
2), which is still not understood.

An analytical calculation of σ2
E is in principle possible,

exploiting the methods described in [14]. Nevertheless, in
order to carry on with such methods, one needs the ex-
pression of the eigenfunctions of the linearized Boltzmann
operator. While for the Gaussian thermostat these eigen-
functions can be computed, in the same way as for the
elastic hard sphere gas, this task seems more demanding
in the case of a stochastically driven granular gas.

The authors thank S. Aumâıtre, S. Fauve and J. Farago for
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ACI is acknowledged.
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